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Turbulence with an infinite number of conservation laws
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It is shown that if the pair correlation function of any tracer in incompressible turbulent flow is
scale invariant with the exponent (2, then the exponent of two-point function of 2nth order does not
equal n{2. In this case, the probability distribution should depend, generally speaking, on an infinite
number of parameters (fluxes of the integrals). Three examples are considered: two-dimensional
vorticity cascade, action cascade in Clebsch variables, and entropy cascade in inhomogeneously

heated fluid.
PACS number(s): 47.10.+g, 47.27.Gs

I. INTRODUCTION

All one-time correlation functions of steady turbulence
are presumed to be scale invariant in the inertial inter-
val of scales. If the exponent (, of the nth correlation
function is not proportional to n, one calls this an anoma-
lous scaling and usually refers to the intermittency phe-
nomenon. This is a great challenge for theory to explain
such phenomena directly from the equation of motion.
This paper demonstrates one possible mechanism of an
anomalous scaling related to the presence of an infinite
number of integrals of motion.

Knowledge of the whole set of integrals is necessary
to describe the statistics of a system both in equilibrium
and in a strongly nonequilibrium (turbulent) state. In
equilibrium, one defines Gibb’s equipartition on the hy-
persurface of all constant integrals in phase space. In
turbulence, a steady state is usually found by requiring
the flux of the respective integral to be constant in &
space provided the locality of interaction can be demon-
strated. If there is only one integral, it is natural to
assume that, for instance, all two-point correlation func-
tions are determined by the constant flux of this integral
and the distance between the points. This immediately
gives a linear (normal) scaling: (, o n. The presence
of an infinite number of integrals may give an infinite
number of constraints. The turbulent probability distri-
bution may thus depend on an infinite number of fluxes
and be multiscaling. As shown in this paper, even an
infinite number of conservation laws does not necessarily
give intermittency: Anomalous scaling appears only in
the cases when there are inertial intervals for all the inte-
grals. The pumping of a high-order integral depends on
the behavior of lower-order correlation functions and may
be distributed over the whole k space even for spectrally
narrow external force.

There may be other reasons for an anomalous scaling
(such as nonlocality of the cascade that leads to the ap-
pearance of an external scaling in the expressions for the
correlation functions) which are not considered in this

paper.

II. GENERAL CONSIDERATION

This paper is devoted to the particular cases of hy-
drodynamic turbulence with an infinite number of inte-
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grals. Namely, we consider the advection equation for
some scalar quantity 6(r,t),
90(r,t)

a T
If v is a velocity of an incompressible fluid so that
divv = 0, then Eq. (1) conserves [ 6™dr for any n with-
out external pumping p and damping d. We are inter-
ested in nonlinear problems so that # is somehow related
to the velocity. In the examples below, 6 will be the
vorticity of two-dimensinoal (2D) velocity field, Clebsch
variable, or temperature acting back on the velocity by a
buoyancy force. A common feature of all three examples
is that the integral over the whole space of any power
of 0 is an integral of motion of the unforced undamped
problem.

If one considers forced turbulence, the way of pump-
ing 62 differs from that of pumping high-order (n > 2)
integrals. Let us consider the external force p with a
typical correlation scale L, and the damping d acting
on the scale Ly. Both p and d can be functionals of 6.
We start from the direct cascade assuming L, > Lg.
For the flux of 62 stuff in the inertial interval of scales
L4 €| ry—r3 |= 712 < Ly, one obtains in a Kolmogorov
manner

([(vi- V1) + (v2 - V2)]010;) = (p162 + p261) = P2 . (2)

The right-hand side is constant at 1 <« L, and it is
equal to the pumping rate of 2. The constancy of the
flux fixes the scaling exponent of the correlation function
on the left-hand side of (2). For 64 one gets similarly

(((v1- V1) + (v2 - V2)]0363) = (16163 + p20263) . (3)

As noted by Lebedev [1], besides the irreducible part
that is constant in the inertial interval, the correla-
tor on the right-hand side of (3) necessarily contains
the reducible parts (p102)(0:162) = P2(6:16;) that change
with 712 as the pair correlator. If the absolute value
of the r-dependent part of (#;6,) is a growing function
of 712, then the reducible (smeared in k space) part of
the pumping decreases when the distance r;, decreases
as one passes deep into the inertial interval. There-
fore, the flux of 8% can be considered as a constant at
L,(Ps/P3?)Y% > ri3 > L4 Here P is the pumping
rate of 6%. Inductively, one can employ such a consid-

-V)8(r,t) = p(r,t) — d(r,t) . (1)
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eration for the correlation function of any order. The
constancy of the fluxes prescribes scaling exponents that
are, generally speaking, different from those given by a
linear scaling (this depends on the scaling of the vertex
vV). High-order conservation laws can thus be the rea-
son for an anomalous scaling if the correlation function
drop while passing to the inertial interval (as it will be
shown below for turbulent convection and the Clebsch
cascade).

Note that the pair correlation function approaches con-
stant as ;2 — 0 in all known examples that possess scale
invariance. If otherwise the correlation functions increase
as we pass into the inertial interval (which corresponds to
a logarithmic behavior, for instance), then the reducible
parts of force correlators prevail so that the fluxes are
not constant for n > 2. As a result, the higher-order cor-
relators are determined by lower-order ones and no addi-
tional constraints appear. Let us emphasize that even if
all the correlation functions of p are zero in the inertial
interval in k space, the pumping of high-order integrals
might be nonzero there. In particular, this is the case for
2D vorticity cascade which we briefly consider here.

III. VORTICITY CASCADE

The Euler equation of motion for incompressible two-
dimensional fluid could be written for the vorticity
w(r,t) = curlv

dw(r,t)
ot
The steady vorticity cascade corresponds to the pair cor-
relations function [2,3]: (w(ri)w(rz)) o« In%3(L/rys).
Considering the flux of w* according to (3), one gets

(v V1) + (v2- Vo) wiw]) oc n**(L/r1z) . (5)

By the same means one can show that the fluxes of any
power of the vorticity (except the second one) are non-
constant in the inertial interval so that no additional con-
straints appear. The same is true for the passive scalar in
a large-scale velocity field (Batchelor regime) where the
correlation functions are also logarithmic.

It is worth emphasizing that fluxes change since there
are no inertial intervals for higher integrals. This change
has nothing to do with nonconservation, which is some-
times erroneously believed to be connected with a trun-
cation of the Fourier representation. The same considera-
tion of the high-order fluxes in the inertial interval can be
provided in k space. To do this, one needs to establish
the detailed conservation of the integrals. The conser-
vation of the second-order integral (for any interacting
triad of wavevectors) can be readily established due to
the simple symmetry of the vertex. Here we show that
this symmetry can be generalized for any set of interact-
ing modes (quartet, quintet, etc.) so that any integral
possesses detailed conservation (this problem was posed
by Kraichnan [4]). This is relevant to numerical simula-
tions of the 2D Euler equation by spectral methods.

The Euler equation in k representation

+ (v Vw(n,t) =p(r,t) —d(r,t) . (4)

a
2 / Tiowiwyd(k + ki + ko) d?kyd2ky,  (6)
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has the vertex I'12 = I'(ky, k2) = [kik;] (k.l_2 - kz'z)/2,
which possesses an infinite number of symmetries. To
show how they provide for the conservation of the inte-

grals of motion, let us introduce the spectral densities of
the integrals H, = [w™(r,t)dx

hn(k) = wk/wl e wn_lﬁ(k-f- v +kn_1)d2k1 LR dzkn_l .
The spatial density (per unit volume) of the integral H,,

is thus equal to [ h, (k) d?k. The conservation laws follow
from the expression for the time derivative

hn(ky) = i/w(kl) (k) w(ky) d2ky - - - d2k,

- Z/w(kl, ) Tgpwlwsd(kp + a+p) -
p=1

xw(kn,t) d?ky - - - d?*k,d%qd?p .

For example, the conservation of the squared vorticity
3
— [ ha(k,t)d’k
ot / 2( )

= 2Re / Flzw}:w{w;&(k + kl + kz) d2kd2k1d2k2

=0
follows from the Jakobi identity for the vertex (qu +
Cip +I‘kq)6(k+ q+p) = 0. By the same means one gets

2
9 k
/ h3 (k, t) d

= / T}wiwiwiwld(ky + ko + ks + kq)d2k, ... d%ks
0

by virtue of the identity

(T12+ T3+ Ta + 23 + T2 + T3q)0(ky + ko + k3 + ky)
=0.

Similar symmetry provides for the conservation of the
nth vorticity integral:

n+1 n+1
D T6 (Z k,,) =0. (7)

Here the first sum is taken over the different choices of
noncoincident 7 and j. Note that if we restrict the dy-
namical vertex I' into some subspace of k space then only
the symmetry with n = 2 survives.

If the spectrum of 2D vorticity cascade was of power
type (nonlogarithmic), then the presence of all the inte-
grals imposes some restrictions that enable one to rule
out hypothetical conformal solutions [5].

IV. BOLGIANO-OBUKHOV CASCADE IN
TURBULENT CONVECTION

Now 6 from Eq. (1) describes the temperature fluctu-
ations acting back on the velocity field by the buoyancy
force:

8
5} +(v-V)v=—0gf, ®)
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where 3 is the volume thermal expansion coefficient and
g is the acceleration due to gravity. Equation (8) corre-
sponds to the so-called Boussinesq approximation which
is valid for not too strong temperature fluctuations. An
unforced undamped system [Egs. (1) and (8)] conserves
the mechanical energy and any power of the temperature
(beyond this approximation, any power of entropy, not of
temperature, is conserved). Depending on the conditions
of excitation, there may exist the interval of scales where
turbulence is completely determined by the temperature
flux [6] (physically this corresponds to the entropy flux
from the viscous scale to the pumping region). In this
case, a steady solution should have constant flux (2) while
the flux of the kinetic energy depends on the scale due to
conversion of the kinetic energy into the potential one:

([((vi-V1)+ (v2-V3)]0:05) = P, ,
([(v1+ V1) + (v2 - V2)](v1vz))

= B(01(g - v2) + 02 (gvy)) -

Assuming that these correlation functions are determined
by two scaling exponents ¢ and 7 of the temperature and
velocity fields 6; — 6 7{2 and |v; — va| oc 775, one gets
Bolgiano-Obukhov scaling ( = 1/5,7 = 3/5 [6-10]. In
particular, it gives the pair correlation function

(81 — 62)%) o Py/°r20° (9)

which corresponds to the power spectrum of the temper-
ature fluctuations P(w) o< w™7/5, which satisfactory fits
the data of the experiments on turbulent convection [11].

Since the correlation function (9) decreases as 715 goes
down into the inertial interval, then the flux of #* is con-
stant there and so the other fluxes

([(vi- V1) +(v2- V2)|0762) = P . (10)

It means that the probability distribution of temper-
ature (as well as any correlation function) depends,
generally speaking, on the infinite set of parameters
(P2y ..., Py,...). The infinite number of restrictions (10)
makes the statistics of turbulent convection strongly non-
Gaussian. In the experiments [11], it was indeed observed
that non-Gaussianity appears at a Rayleigh number that
corresponds to the transition from soft to hard turbulence
exactly when the Bolgiano-Obukhov scaling appears.

As one can see, all the exponents of the correlation
functions (10) are zero and do not coincide with the esti-
mate 17 — 1+ 2n( based on using one scaling exponent of
the temperature field. Turbulent convection is thus mul-
tiscaling. This explains the absence of a simple scaling
in the measurements of probability distribution of tem-
perature difference [12].

The same is true for any tracer (passive or active) in
incompressible flow: if the pair correlation function is
scale invariant with the exponent (2, then the exponent
of two-point correlation function of 2nth order does not
equal n(;. Note that this statement is stronger than that
of non-Gaussianity [12-16]: any one-parameter probabil-
ity distribution (exponent, streched exponent, etc.) is
irrelevant. For example, for passive scalar (with v being
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independent of 8) Eq. (10) gives, in particular, {, = (2
for any n [17]. Despite the fact that we have one scaling
exponent for any correlation function, the probability dis-
tribution function (PDF) should be multiparametric in

this case. Indeed, any one-parameter PDF f(z/Z) with

z=0,0; and T rg gives

(™) = /:c"f(:l:/:i:)dz o« Z" o T .

The steady PDF should depend on the injection rates
of all powers of # that are determined by an external
pumping and can be arbitrary.

Coming back to the turbulent convection, one can
make the simplest assumption that the spectral density
of any integral is mainly determined by its own flux. It
gives the following scaling:

4n/(4n+1
(0 -0 = (Purtf?) ™ oy )
Let us emphasize that (as distinct from the above results)
the formula ¢, = 2n/(4n + 1) is a pure conjecture. One
can suggest another possibility that the velocity field is
single scaling so that (,, =const. It would be interesting
to extract the dependence ((n) from the experimental
data on turbulent convection.

V. ACTION CASCADE IN CLEBSCH
VARIABLES

Kelvin’s theorem enables one to rewrite the Euler equa-
tion for incompressible fluid as an advection equation
[18,19]

da(r,t
0,
ot
Here again p and d are some external pumping and damp-
ing, respectively, which may be functionals of a. The fluid

velocity is expressed via the complex Clebsch field a(r,t)
as follows:

v =1i(1-VA~ldiv)(aVa* —a*Va) . (13)

v - V)a(r,t) = p(r,t) — d(r,t) . (12)

Considering three velocity components with additional
restriction of incompressibility is equivalent to consider-
ing one complex function a(r,t) for flows with zero helic-
ity [19]. For nonzero helicity (with knotted vortex lines)
one should introduce three complex functions [20] which
has no influence on what follows. Without p and d, Eq.
(12) conserves the integral of any function of a(r,t). We
restrict ourselves with real quantities considering the in-
tegrals of motion of the kind I, = [ | a(r,t) |*" dr.
Before studying cascades in Clebsch variables one
should understand how the boundary conditions in k
space (pumping and damping) change while one passes
from Clebsch variables to velocity [20]. Since this is a
nonlinear transform one may be concerned that a spec-
trally narrow pumping in one variable might give a pump-
ing distributed over the entire inertial interval in another
variable. Whether it is so or not also depends on the
behavior of the correlation functions. Fortunately, such
a “distributed pumping” is absent for our case. To show
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this we pass into k space vi = [112a1030(k + k; —
kz)dk]_dkz, where ¢12 = kl + k2 - (k1 - kz)(k% - k%)/
| k; — ko |2. The force f, = dv/dt acting on the velocity
field is expressed via p

£, (k) = / Pr2(a1p} + pra3)b(k + ky — ko) dkydk, .

The pumping of energy is determined by the correlation
function

(£ (k) - v(K)) = / (13 - aa) (0103 (asp} + psal))

x8(k + ky — kp)d(k' + ks — ky)
Xdkldkzdk3dk4 .

It is the reducible part (pa*)(aa*) that might be danger-
ous for the pumping localization in k space. We assume
the p pumping to be localized: (pra},) = Cé(k—k')é(k—
£). In the right inertial interval k£ > & the reducible part
of the correlator gives the following contribution into the
energy flux: 6P (k) ka qzn(q)d)gndq, which is k inde-
pendent if n(g) drops faster than k~3. We have desig-
nated (axaj,) = nipd(k — k'). Since for the direct (Kol-
mogorov) cascade n(g) o ¢~'3/3) then the pumping is
negligible and the flux is constant in the inertial inter-
val. One can similarly consider the left inertial inter-
val k <« k and show that the pumping is absent there.
The same consideration can be employed for the external
damping (both the viscous small-scale dissipation and a
large-scale friction). If the damping is bounded to small
(large) scales in Clebsch variables, then it is negligible in
the right (left) inertial interval in terms of velocity.

We thus can consider turbulence in Clebsch variables
with the scales of pumping and damping being strongly
different. To produce I,,, the pumping p should be of non-

Hamiltonian nature [20] (similarly, one should have non-
potential external force to produce vorticity). One can
show that if there is a left inertial interval with a large-
scale damping, then the fluxes of I, are directed up scale
opposite the energy flux in three dimensions [21]. Here
we consider this hypothetical inverse cascade assuming
L, € 712 € Lg. By requiring the flux of the action I
to be constant, Zakharov and L'vov [22] postulated that
n(k) o< k=%, which corresponds to (|a(r1)—a(r2)|?) o r12.
This corresponds to the energy spectrum Ej o« k~!. Sim-
ilar to (3), one can consider the fluxes of higher integrals.
The only difference is that one should consider d instead
of p since the small-scale pumping gives no contribution
for larger scales. Since the pair correlation function drops
as 715 decreases, then “distributed damping” is absent.
All the fluxes should be constant in the inertial interval:

(((vi- V1) + (v2- V3)]ata;") = P, . (14)

Again, we see that a one-parameter solution with a lin-
ear scaling is impossible. The statistics of the field a
should be the subject of infinite number of restrictions.
This makes irrelevant any consideration of this cascade
in the framework of closures or in the one-loop approxi-
mation [23]. If the Clebsch correlation functions possess
an anomalous scaling this should also be the case for the
velocity correlation functions provided such an inverse
cascade could exist.
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